
Authoring Transformations by Direct Manipulation for
Adaptable Multimedia Presentations

Lionel Villard
Opéra Project

INRIA Rhône-Alpes Research unit
Zirst - 655 avenue de l’Europe - Montbonnot

38334 Saint Ismier Cedex
France.

Tel: +33 (0)4 76 61 53 82
Fax: +33 (0)4 76 61 52 07

lionel.villard@inrialpes.fr

Abstract
In this paper, we present a method for authoring generic and
adaptable multimedia presentations. This method relies on
document transformations. For the currently available tools,
designing the XML content and the transformation sheets is
a tedious and error prone experience. We propose a
framework based on an incremental transformation process.
Incremental transformation processors represent a better
alternative to help in the design of both the content and the
transformation sheets. We believe that such authoring tools
are a first step toward fully interactive transformation-based
authoring environments. In this paper, we focus on the
authoring of transformation sheets by direct manipulation.
In particular, we study the authoring of transformations for
the XSLT language defined at the World Wide Web
Consortium.

Keywords: Incremental transformations, Authoring tools,
Multimedia, Document model, XSLT, XML.

1 Introduction
The advent of the XML standard at the World Wide Web
Consortium has triggered the definition of an incredible amount of
vocabulary groups in different areas of content representations.
Although these vocabulary groups are defined separately and
designed for a variety of purposes such as content structure
descriptions, layout languages, vector graphics or mathematical
formulas rendering, they can also be inter-mixed in a single and
same document. These vocabulary groups share the same
encoding language at the syntactic level thanks to XML and are
combined using another XML companion standard called XML
Namespaces [11]. However, in most cases the content is encoded
using third party DTD’s while the resulting documents are
encoded using rendering vocabularies such as XSL [3]. The result
is an increasing diversity of document classes and vocabularies
and a lack of authoring tools to cope with this diversity.

Two categories of existing authoring tools for editing XML
content have been identified. Authoring tools that belong to the
first category deal with rendering vocabularies. These tools are
designed specifically for one or many rendering vocabularies. For
example, Adobe illustrator allows the authoring of SVG
documents, Grins [12] is designed for authoring SMIL documents,
Amaya [18] allows the authoring of MathML1, SVG2 and
XHTML3. In the second category, authoring tools are generic and
deal with any kind of XML documents. Therefore, the only way
to edit XML documents is through a lower-level text
representation or at most through an enhanced representation such
as a graphical tree. More recently, some authoring tools [14] give
the author the ability to edit and attach style to XML elements.
This association simplifies the authoring of a document by
making the XML content more accessible to the user through the
graphical interface. However, style sheets remain of a very limited
help when considering more complex presentations, in particular
those obtained by transformation. Moreover, authoring style
sheets is relatively easy unlike transformation languages which
are more complex to edit in a convenient way.

Another feature that must be addressed when presenting XML
documents is the adaptation of document content to the current
presentation context. This operation must take into account user
capabilities, user preferences, physical location, network and
system resources, etc. A lot of current content adaptation
architectures are based on transformation process [6][16].
However, as we said previously, transformation sheets are hard to
design. The challenge is then to provide authoring tools to help
the author to design adaptable documents by authoring
transformation sheets.

In [17] we have presented a framework that allows the editing of
XML documents through one or more of its rendered
presentations. In order to produce and to edit complex and
adapted presentations, in particular multimedia presentations, this
framework is based on an incremental transformation process. In

1 Mathematical Markup Language (MathML) Version 2, available
at http://www.w3.org/TR/MathML2/
2 Scalable Vector Graphics (SVG) 1.0 Specification, available at
http://www.w3.org/TR/SVG/
3 XHTML™ 1.0: The Extensible HyperText Markup Language,
available at http://www.w3.org/TR/xhtml1/

[17] we used this framework for editing source documents of
transformations. The next step is to extend this framework for
editing transformation sheets.

The goal of this paper is to present a method that allows authoring
of transformations by direct manipulation. In particular, this paper
focuses on the XSLT transformation language. XSLT [21] is a
general-purpose transformation language that is used in many
applications: data conversion, database queries, presentation
generation, etc. The latter is probably the most popular application
directly visible to the end user. In this paper, we focus on this kind
of applications. We consider the reader familiar with the XSLT
language. The vocabulary used in this paper that is related to
XSLT is defined in the section 3.4.

The remainder of the paper is organized as follows: in the second
section, we describe existing tools that allow the authoring of
transformations and the authoring of queries. In the third section,
we present the context of work presented in this paper. In
particular, we describe the framework based on an incremental
transformation processor. In the fourth section, we give an
overview for authoring transformation sheets by direct
manipulation. This overview is described through an editing use
case study. In the fifth section, we describe the transformation
rules that are generated for a subset of editing operations. In the
last, section we give some conclusions and draw some
perspectives.

2 Related work
We have classified the related work in two categories. The first
category represents authoring tools designed specifically for
XSLT. The second category gathers work about the authoring of
presentation models (such as style sheets) and the connection with
a database. The latter covers the XPath [20] aspect of the XSLT
language.

2.1 Authoring tools for XSLT
Two kinds of existing authoring tools for XSLT have been
identified. The goal of authoring tools that belong to the first
category is to create general-purpose XSLT transformations
[1][2]. Such tools are equivalent to interactive development
environments (IDE). They provide a textual view of XSLT code
and a debugger. When the target document is an HTML
document, these tools provide a formatted view of the
transformation result. An approach based on visual programming
is presented in [13]. The presented tool allows the visualization
and the editing of general-purpose transformations. In particular it
proposes to edit XSLT transformations. Although this tool
increases the author efficiency, it requires a good knowledge of
the transformation language.

Authoring tools that belong to the second category allow the
authoring of transformations for generating exclusively HTML or
XHTML presentations. Therefore these tools take advantage of
this specific context to provide high level authoring features.
<xsl>Composer [19] allows the generation of XSLT
transformations by direct manipulation. The main window is
composed of four parts. The first part shows hierarchically the
opened XML document. The second part shows the list of
templates. The third part shows applied templates and the last part
shows the final presentation and the XSLT code. Dragging and
dropping XML elements in the final presentation achieves the
creation of new templates. The authoring of the template content,

which is HTML, is done in a separate WYSIWYG view.
Although this tool allows the generation of XSLT transformation
sheets in a convenient way, it does it in a very limited way. A
limited part of the XSLT expressiveness is considered. In
particular, this tool does not allow nesting of templates: templates
are applied in sequence only. Therefore, it is not possible to create
presentations for recursive document models. Moreover, the
transformation process is executed from scratch after each
modification of the transformation sheet. The result is an
increasing processing cost proportional to the size of the
document. In [9] is presented a method for generating XSLT
transformation sheets by demonstration. The source document and
the target document are both HTML. The method relies on the
recording of user interactions when he/she edits an HTML
document. At the end of the recording, transformation rules (or
instructions) are generated from the history of user interactions.
This method has the following drawbacks. First, the source
document and the target document belong to the same document
class. And secondly, as this method relies on demonstrational
interfaces, it inherits its drawbacks. In particular, demonstrational
interfaces do not provide a static representation of the program.
Therefore, the reuse, the modification and the revision of the
program are not possible [10].

2.2 Authoring of document models and
database connection
The authoring of transformation sheets is similar to the editing of
presentation models and the connection with a database.
Microsoft Office allows the creation of presentation models based
on style sheets. The content of the model can be filled manually
by the author or generated automatically from a relational
database. The selection of data is made through several forms. As
we said previously, editing style sheets is easier than editing
transformation sheets.

Macromedia Dreamweaver and UltraDev allow the creation of
presentation models for HTML documents. UltraDev allows the
creation of JSP4 and ASP5 code by direct manipulation. The
edition of HTML pages is achieved through three views: the
design view, the live data view and the code view. The design
view shows language instructions, such as database queries. The
live data view shows the final presentation with real data. The
code view shows the ASP/JSP code embedded inside the HTML
code. The authoring of SQL queries is performed externally either
through wizards or using a textual view. When a query is dragged
and dropped inside the design view, the corresponding JSP or
ASP code is generated. Although ASP or JSP languages have
some similarities with XSLT language, they are different. In
particular, XSLT is a rule-based language and it applies on XML
documents, while ASP/JSP code is applied on database.
Macromedia Ultradev does not need to deal with templates and
contextual queries. Moreover, the generation does not deal with
multiple dimensions (spatial, temporal, etc.). It simply generates
HTML documents.

4 Java Server Pages, Specification available at
http://java.sun.com/products/jsp/index.html
5 Active Server Pages, http://msdn.microsoft.com/workshop/
server/asp/ASPover.asp

2.3 Synthesis
None of the previous tools allows the friendly authoring of
transformation sheets. Either they are difficult to use or they
handle a subset of the transformation languages. In particular,
they do not take into account the capability to transform recursive
documents (for example a list inside a list). At the XSLT level, it
is translated by the incapacity to handle relative expressions.
Another lack of the friendly tools is their incapacity to include in a
same tool specific modifications and generic modifications. In
particular, the live data view of Macromedia UltraDev considers
the ASP/JSP code as monolithic: no specific modification is
allowed. Moreover, all of theses tools allow only the generation of
HTML documents. None of the tools provide a way to edit fully
XPath expressions. Finally the time of transformation executions
(and also the execution of the ASP/JSP code) prevents the
creation of reactive authoring tools. In this paper, our contribution
is to propose a complete authoring tool that handles any kind of
XML documents, in particular recursive documents, and that
produces multimedia documents. This authoring tool relies on our
incremental transformation processor that we have extended in
order to handle transformation sheets modifications.

3 Context of work
3.1 The Kaomi multimedia authoring tool
Kaomi [8] is an authoring tool that allows the creation and the
modification of multimedia documents. The edition of multimedia
documents is achieved through multiple views of the document.
The main view, called execution view, allows playing the
document. Various other views convey comprehending
information on the document: its structure, its temporal scenario,
its content, etc. These views can support editing actions and can
be synchronized on object selection. For example the author can
directly change the layout of the presentation in the execution
view. In the remainder of this paper, such views are called target
views. They show the result of the transformation process: the
target document. Moreover, Kaomi allows the presentation of
XML documents that belong to classes. Typical examples of
document classes are tourist guides, slideshow presentations,
technical documentation (for installation and maintenance),
courseware and photo album. The presentation of XML
documents is achieved by transforming the document to
presentation document models such as Madeus [7] (c.f. the next
section). The authoring of XML documents is performed in
source views and also through target views. The goal of this paper
is to reuse the same authoring paradigm for editing XSLT
transformation sheets.

3.2 The Madeus model
The Madeus model is a model for describing multimedia
documents. It allows composition of media objects (text, audio,
3D animation, etc.) in temporal, spatial and hypermedia
dimensions. The description of composition is distributed over
four modules: general definitions module, media definition
module, temporal scenario module and spatial layout modules
[16]. Its syntax is formally described as a XML DTD and
therefore it takes full advantage of all XML existing tools. The
DTD itself can be found at [15].

In order to simplify the description of rules generation, we use a
subset of the Madeus model composed only of the media and the
spatial modules. The media definition module allows the

declaration of objects that belong to the presentation. The spatial
layout module allows the organization of object in space. These
two modules define two independent hierarchical structures. Links
between these structures are made by ID references. Principles of
rules generation presented in this paper can easily be applied to
the rest of Madeus modules. More generally these principles can
be applied to other presentation languages such as SMIL, XSL-
FO, etc.

3.3 Photo album model
The source document model used throughout this paper is the
photo album model. This model represents a set of photos
gathered in albums (cf. Figure 1). Each album is composed of
meta-data gathered inside the header element and a list of photos.
Meta-data are the title, the date of creation and the author of the
album. A photo is characterized by the src attribute that references
a file name containing photo data. The aperture and the speed of
diaphragm used during the photo shot can eventually be specified
using aperture and speed attributes. The location where the photo
has been taken is given by the location element. Textual and/or
audio comments about photo are added inside the comment
element. The content of textual comments can contain paragraphs
(para element) and lists of items (list, listitem elements). Nested
lists are also allowed.

 <?xml version="1.0" encoding="ISO-8859-1"?>
 <album>
 <header>
 <title>Vacancy in Corsica</title>
 <date>June 2000</date>
 <author>Lionel Villard</author>
 </header>
 <photo src="Corse/p1.gif" speed="11" aperture="3">
 <author>Lionel Villard</author>
 <location>In the ferry boat</location>
 <comment>
 <para>First contact with the corse isle</para>
 </comment>
 </photo>
 <photo src="Corse/p2.gif" speed="auto" aperture="auto">
 <comment src="Corse/p2_comment.mp3"/>
 </photo>
 </album>

Figure 1. An instance of photo album model.

3.4 Incremental transformations
The authoring of transformation sheets can be interactively
achieved only if results of transformation modifications are
visualized instantaneously. Batch transformation is resource
intensive and therefore is not suitable for interactive authoring.
The best way for updating transformation result is to use an
incremental version of transformation process [17]. The core of
this processor is the internal representation of the transformation
execution: the execution flow tree (see Figure 2). The execution
flow tree structure is composed of so-called execution nodes.
Execution nodes of type flow (apply-templates, for-each, if, etc.)
contain the value (as hierarchical links) of their associated
expression. For instance, apply-templates execution nodes have
template nodes as direct children. Template nodes, and only these
nodes, have links to the source nodes. Therefore, from apply-
templates nodes we can retrieve source nodes that compose the
context node list. Producer nodes (value-of instruction, literal

elements such as Region element) contain data related to the
target tree. This data will be use to restore the target context. For
example, the literal result elements (Region and Flow elements in
the figure) have a link to the element it generates. For a character
producer such as value-of instruction, only the number of

generated characters needs to be stored.

Figure 2 Fragment of the execution flow tree for photo album
transformation.

This data structure is widely used, in particular, for updating the
target document after transformation modifications. In this paper,
we consider two kinds of modifications:

1. Instructions (other than template) addition: when an
instruction is added in a template, the target document can
easily be updated thanks to the execution flow tree. This is
done in three steps:

1. Execution nodes corresponding to the parent of the newly
inserted instruction are found.

2. For each of the execution nodes, the processor context
and the target context are restored (c.f. [17])

3. The newly inserted instruction is then executed. When
this instruction is a producer instruction, the target
document is updated.

2. Template instruction addition: when a template node is
added, it’s necessary to re-consider all previous template
instantiations. For each node selected by apply-templates
instructions, a template is sought. In [17] is described an
optimization that minimizes the number of such re-
considerations.

As we will see later, the execution flow tree will be used for
helping the generation of transformation instructions.

4 Use case study for authoring a photo album
presentation
This section gives an illustrative use case study for editing
transformation sheets by direct manipulation. The main goal of
this use case study is to present editing operations from the author
point of view.

4.1 General approach
The authoring of presentations is achieved for an XML instance of
a document model. The author edits multimedia presentations
directly in target views. The authoring of XPath expressions is
performed on the hierarchical view of the XML document. The

insertion of XPath expressions in transformation sheets is
achieved by dropping expressions in one of the target views. In
this paper, we do not consider a more generic approach consisting
in authoring transformations from document models. Indeed, most
of the XML documents do not require having a formal definition

of document type (DTD).
However, authors of these
documents want to create
complex presentations and
reuse them for similar
documents. Moreover the
using of document instances
allows the visualization of the
presentation obtained by
transformations. We expect
that this visualization
simplifies the editing of
transformation sheets. We
propose a multimedia

authoring tool for such requirements.

4.2 Creation of photo albums
The Figure 3 illustrates the multimedia presentation that we want
to create. The presentation is composed of two parts. On the left a
list of photo thumbnails is presented vertically. The right part
presents a photo in their original size. At the bottom of the right
part is displayed textual data about the current photo: author,
aperture, speed, date and filename. Navigation buttons are
provided in order to see the preceding or the following photo.

To build this presentation, the author starts by creating a new
empty presentation. In the execution view, he inserts two spatial
groups inside the root region, one for the left part and one for the
right part. Then he sets the right spacing by inserting a spatial
relation between these groups.

In the left part he inserts an empty image and opens attributes
view of this image. This view shows in particular the FileName
attribute of the newly created image. In order to set this filename

Figure 3 A presentation for the photo album model.

attribute, the author opens the source view. In this view, he selects
the src attribute for all photos (that correspond to the photo/@src
expression) and drags it in the filename field. As the evaluation of
the expression returns several src attributes, the authoring system
generates a for-each instruction in order to produce an image for
each photo.

By default, when a region contains an image, the region size
corresponds to the intrinsic dimension of the image. When the
author wants to create photo thumbnails, he must resize each
generated region. The resizing of the first (or other regions) is
applied only on this region. He can repeat this operation for each
generated region, but it is tedious. Moreover this operation can be
performed only for the photos in the document instance.
Therefore, the execution view must visualize the presentation in a
more generic way (c.f. Figure 6). The author perceives just one
region augmented by a header representing the repetition of
photos. When the author resizes the region in this view mode,
each region generated by the photos is resized.

In order to create the presentation of the right part, the author
proceeds in the same way. He uses alternatively the specific and
the generic representation of the presentation. To create the
presentation of item lists, the author add a spatial group in the
presentation. Then he drops the list expression inside the new
spatial group. He turns on the generic mode, adds a new spatial
group and drops the listitem expression in the spatial group. The
authoring system generates a spatial group for each listitem as
described previously. In order to generate nested lists, the author
selects a header that represents the repetition of the list
expression. Then he drags and drops it in the spatial group
generated by the listitem elements. The authoring system
generates a template for listitem elements and applies the template
for the first level and the others levels of list elements.

The result of this use case study is a complete multimedia
presentation. This presentation can be reused for each document
that belongs to the photo model. Moreover, the generated
transformation sheets can be easily modified in order to produce
presentations adapted to other devices. In this section we have
presented the editing of transformations from the author point of
view. In the next section, we describe the generation of rules from
the developer point of view.

5 Rules generation
In this section, we start by giving a set of rule patterns to apply
when the author makes a particular modification in a target view.
Then we propose a graphical user interface to edit XPath
expressions. The third section describes the modifications to apply
in transformation sheets when the author drops an expression in a
target view. As the transformation specification is visualized
through multiple views, the last section shows how to keep the
selection synchronization between these views.

5.1 Rules generation from target views
As illustrated in the use case study, the author can edit
transformations directly in a target view. The authoring is
achieved using classical multimedia editing operations. For
example, the author can add a video object, modify the content of
a text item, change the style of an object, remove a temporal
relation, etc. The result of these authoring operations is a set of
transformation rules. In this section, we study the different cases
of rules generation when the author performs such authoring

actions. Most of the time, these actions are performed in a
formatted view of the document. In this paper, we do not cover
the conversion from the formatted view to the initial specification
of the multimedia document. A number of previous works have
covered this subject [4].

With the currently available tool, the author can edit the
presentation in a specific way. Target views show the result of
transformation applied to a particular source document instance.
Although some authoring operations need to be done in such
views, they are not sufficient to perform more complex editing
operations. For example, the author cannot add a media object
inside all groups generated from each photo. Therefore, the
authoring tool must provide a more generic view that allows the
visualization of transformation instructions. This visualization is
achieved by extending existing views and/or by creating new
views, as we will see later. The extension is done by providing
two visualizations mode: the specific mode and the generic mode.

In the following sections, we firstly describe what rules are
generated when the authoring occurs in target views turned in
specific mode. Then we describe how generic target views are
built and we give rule patterns to apply when the editing is
achieved in this kind of views.

5.1.1 Specific views
Specific views show the target document resulting from
transformation. Each modification on this view is converted to
transformation instructions that allow meeting the author intents.
For example, when the author adds an image in the multimedia
presentation, say in the fourth spatial group, an image element is
added in the transformation sheet and a region element is added as
child of the selected spatial group (see Figure 4). As views are
specific, the author expects to make a specific action. In the
previous example, the Figure 4b illustrates a bad generation: a
region is added for all photos and not for the fourth photo. Indeed,
as a spatial group is generated for each photo, the selected spatial
group must be firstly isolated. This separation is realized by using
the pattern illustrated Figure 4c. This pattern is called the isolation
pattern.

<xsl:template match="album” mode=”ac”>
</xsl:template>

<xsl:template match="album” mode=”sp”>
 <xsl:for-each select="Photo">
 <S-Group/>
 </xsl:for-each>
 …

(a) Before authoring

<xsl:template match="album” mode=”ac”>
 <Image ID="image"/>
</xsl:template>

<xsl:template match="album” mode=”sp”>
 <xsl:for-each select="Photo">
 <S-Group>
 <Region Actor="image"/>
 </S-Group>
 </xsl:for-each>

 …
(b) Bad generation

<xsl:template match="album” mode=”ac”>
 <Image ID="image"/>
</xsl:template>

<xsl:template match="album” mode=”sp”>
 <xsl:for-each select="Photo">
 <xsl:choose>
 <xsl:when test="position()=4">
 <S-Group>
 <Region Actor="image"/>
 </S-Group>
 </xsl:when>
 <xsl:otherwise>
 <S-Group/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:for-each>
…

(c) Good generation

Figure 4 Result of the generation after the addition of an
image object in a specific view.

The generation of the isolation pattern needs to compute the
condition that allows the separation of the rule. This separation is
needed only when the transformation rule can be generated many
times. In XSLT, multiple generations occurs only when an
instruction is inside a for-each or a template element. For each of
these instructions that are ancestor of the selected rule, the
position of context node is computed. The only way to perform
this computation is to retrieve the corresponding execution flow
nodes (c.f section 3.4). Indeed, only this structure contains the list
of selected nodes.

5.1.2 Generic views
The generic views show the transformation specification in a semi
formatted manner (see Figure 6). This kind of views is built as
follows: the instructions for-each and apply-templates are applied
only for the first selected node. The instructions that generate
characters, such as value-of and text, generate characters that
represent the instruction. For example, the expression value-of
generates the expression attached to it. When the mouse cursor is
over a target representation, a header is shown. This header
contains the representative name of the instruction and the
expression attached to the instruction (if it exists). The author can
change the authoring mode from generic to specific by clicking on
the swap button. While target views are synchronized, the header
is shown in all views. Moreover, inside a same view, the header
can appear many times. For example, when the body of a for-each
instruction contains two spatial groups, then two headers are
attached to these two groups.

The generation of rules in generic views is easier than in its
specific counter-part. However, as the target document has many
dimensions, the difficulty is to generate the links between these
dimensions. In Madeus, multi-dimensions links are represented by
unique identifier (UID) references. Static identifiers are not
enough to guarantee the uniqueness. The generation of UID rely
on the generate-id() function that generates an UID for a specific
source node.

<xsl:for-each select="photo">
 <Region/>
</xsl:for-each>

(a) Before

<xsl:for-each select="photo">
 <Image ID="A-photo{generate-id()}"/>
</xsl:for-each>

<xsl:for-each select="photo">
 <Region Actor="A-photo{generate-id()}"/>
</xsl:for-each>

(b) After

Figure 5 Result of rules generation after the insertion of an
image in generic-mode execution view.

5.1.3 Mixing representations
Most of editing operations requires some parts of the multimedia
presentation to be specific and other parts to be generic. For
example, when two for-each instructions are nested, the author
can add an object inside all elements generated by the first for-
each instruction and just for the third element generated by the
second for-each instruction. Kaomi allows the swapping between
the specific representation and the generic representation for
fragments of the target document.

5.2 Authoring of location path expressions and
patterns
Authoring expressions are achieved in hierarchical source view.
The figure 5 shows the authoring of

Figure 6. Generic mode representation of the execution
view.

/album/photo/descendant::author expression. The user edits the
expression by selecting one or many elements or attributes in the
hierarchical source view. He can add constraints on each step of
the expression using the filter dialog. The status bar shows the
expression currently being edited. The expression can also be
edited directly in the status bar.

In order to shorten the edition of expressions, two authoring
modes are provided: the single-selection mode and the multiple-
selection mode. The single-selection mode allows the selection of
a particular node. For instance, when the user selects the second
photo element in the source view, the /album[1]/photo[2]
expression is generated. In contrary, the multiple-selection mode
generates expression that potentially selects a set of nodes. In this
mode, when the user selects the second photo element, the photo

expression is generated. Independently from theses modes, the
author can restrain or extend the node selection by applying
editing operations described below.

The generation of expression depends on the key modifiers used
during the selection.

No modifier: the expression is re-initialized. The generated
expression depends on the current mode. In single-selection
mode, the expression that selects the node is generated. It’s
an absolute expression. In multiple-selection mode, the
expression consists of just one step. This step is either the
selected node name (for element node type) or the selected
node type (for other node type).
Control modifier: a step is added (or removed) to the

current expression. Depending on the current selection
position, the choice of the axis between the previous step and
the new step follows these rules:

• The level of current selection is the same as the previous
selection level. If the current selection is after the
previous selection, the authoring system generates either
a following-sibling axis or a following axis. In contrary,
if the current selection is before the previous selection,
either a previous-sibling axis or a previous axis is
generated.

• The difference between the level of current selection and
the level of the previous selection is equal to one. If the
current selection belong to the same path of the previous
selection, two cases occurs:

• When the current selection is before the previous
selection, parent axis is generated.

• Otherwise, child axis is generated
• There is a difference of two or more levels between the

level of the current selection and the level of the previous
selection. This case is similar to the previous one. The
descendant axis is generated in place of the child axis and
the ancestor axis is generated in place of the parent axis.

Shift modifier: a union operator is created.
More than visualizing the expression that is being edited, this
view shows the result of the expression evaluation. The nodes that
belong to the result of the expression are shown with a red box
around the nodes representation. Intermediate nodes resulting
from expression steps are also shown using black boxes. When
the expression is not absolute, the user can select the context node
for testing the expression.

With this view, the author can edit simply any kind of location
path expressions. Moreover he can check through an example the
result of the expression.

5.3 Generation of rules from expressions
After the creation of an expression in a source view, the author
can drop this expression somewhere in a target view. In this
section, we describe what transformation rules are generated after
this kind of editing operation. A basic rules generator is firstly
described. Then we give some techniques that increase the power
of the basic rule generator: the creation of templates and the
computation of similar expressions.

5.3.1 Basic rules generator
When the author drops a source expression in a target view, he
identifies a target node and a position inside the target node.
When the dropping destination is near the borders of the target
node representation, the generator marks the target node as the
destination of the dropping. Otherwise, the generator marks the
content of the target node as the destination of the dropping. For
example, when in the use case study the author drops the
expression @src inside the filename field and “far“ of the borders,
the value of the attribute FileName that belong to the image
element is marked as the dropping destination. The owner
template matches any album elements.

From the target node, the context source node of the template can
be easily retrieved. This source node is used to evaluate the source
expression. The rule generator produces different rules depending
on the result of the source expression evaluation:

1. The source expression generates no node. An error is

Figure 7 Authoring of expressions in
hierarchical source view

displayed and nothing is generated.
2. The source expression generates only one node. The

following cases occur depending on the type of target node
and the position inside of the target node:

1. The target node is the value of an attribute. The generator
adds an attribute value template (AVT) containing the
evaluation of the source expression. For example:

 <Image FileName=””/>
(a) Before

 <Image FileName=”{photo[1]/@src}”/>
(b) After

2. The target node is the content of an element. The
generator adds a new object inside the target element or
modifies an attribute of the target element. The type of
the new object depends on the nature of the target
element and the source node. For example, when the
value of the source node references an image file and
when the target element is a spatial group, the generator
adds a new image media inside the spatial group.

3. The target node is an attribute or an element. The
generator adds a test based on the source expression for
generating the target attribute or element.

3. The source expression generates more than one node. The
following cases depending on the type of target node and the
position inside of the target node:

1. The target node is the value of an attribute. A for-each
instruction is generated. The select attribute contains the
fragment of the source expression that generates many
nodes. The content of the for-each instruction is an
attribute value template (as describe previously). For
example, the following generation after the author drops
the photo/@src expression in filename field:

<xsl:template match="album" mode="ac">
 <Image ID="A-1"/>
</xsl:template>

<xsl:template match="album" mode="sp">
 <S-Group>
 <Region Actor="A-1"/>
 </S-Group>
</xsl:template>

(a) Before

<xsl:template match="album" mode="ac">
 <xsl:for-each select="photo">
 <Image ID="A-1{generate-id()}"
 FileName="{@src}"/>
 </xsl:for-each>
</xsl:template>

<xsl:template match="album" mode="sp">
 <S-Group>
 <xsl:for-each select="photo">
 <Region Actor="A-1{generate-id()}"/>
 </xsl:for-each>

 </S-Group>
</xsl:template>

(b) After
2. The target node is an attribute. An error is displayed. The

XML language enables to set just one attribute with the
same name on an element.

3. The target node is the content of an element. When target
element is a composite, the generator produces many
new objects. Rules to choose the type of objects are the
same that those presented previously (case 2.2). When
the target element is a leaf, the previous rules cannot be
applied for the same reason invoked in the previous case.
An error is then displayed.

4. The target node is an element. The target element is
encapsulated inside a for-each instruction.

The previous generation patterns can be applied for the two target
authoring modes (generic/specific). When the part of view is in
specific mode, the isolation pattern (c.f. section 5.1.1) is applied
before the previous patterns.

Most of the time, as the target document describes multimedia
presentations, rules are created in several templates with different
modes. These rules are strongly linked. The modification of rules
in a particular template implies the modification of linked rules in
other templates. For example when the author changes the photo
expression in the previous example (the case 3.1) to another one,
the two select attributes in the two templates are changed.

By default, the basic generator generates for-each instructions
rather than template/apply-templates instructions for performance
reasons. The creation and the application of template instructions
are presented in the next section.

5.3.2 Generation and application of template
instructions
A natural way to generate template instructions is to convert a for-
each instruction to an apply-templates/template instruction couple.
The select attribute of the apply-templates instruction is the same
as the select attribute of the for-each instruction. In order to
generate the template instruction, the for-each expression must be
converted to a pattern. The result pattern matches at least all the
nodes selected by the expression. The template mode is the same
as the template that contains the for-each instruction. This
conversion must be performed for all for-each instructions linked
together (c.f. previous section).

This conversion is performed by dragging and dropping the
header of a for-each instruction to another location in space and
time. While the presentation is dynamic, this location can be not
visible. That is why a template view is provided. This view allows
the visualization of the existing templates. The author instantiates
a template by dragging and dropping a template in a target view.
Moreover he can create new templates by dragging and dropping
a pattern in the template view.

5.3.3 Generation of relative and similar expressions
In the target views, the author has not a direct knowledge of the
template context. Therefore, it is not easy to create the exact
expression to use in a particular context. To add more flexibility
during the dropping of an expression in a target view, the
authoring tool can calculate some expressions that are close to the

initial one. This happens when nothing is produced in the
destination context. For example, nothing is generated by the
@src expression when it is dropped in a spatial group generated
by a template that matches album elements. The authoring tool
can propose to drop the photo/@src or the photo/comment/@src
expressions rather than the @src expression. These expressions
are deduced from the photo album model. This model allows the
specification of the src attribute only on photo and comment
elements. The computation of similar expressions is relatively
complex. It relies on the analysis of transformation sheets and
document models. In our paper, we don’t describe such
computations.

5.4 Selection synchronization
The synchronization on object selection is a fundamental concept
when the authoring is performed on multi-views. Indeed, the
drawback of multi-views is the partial and the fragmented
perception of object properties. The synchronization allows the
visual grouping of these properties. The Kaomi authoring tool
already allows the synchronization between targets views. We
have extended this synchronization between source views and
target views.

When the author selects an object in a view, one or more
document nodes are selected. The synchronization is performed
for each of these nodes. The realization of the synchronization
depends on the document selected:

A target node is selected: the execution flow tree contains
references to target nodes. Therefore, the corresponding
execution nodes can be easily retrieved. Each expression of
these execution nodes is evaluated. The result is the list of
source nodes to synchronize.
A source node is selected: the system must find all
expressions that return the selected source node. The result of
expression evaluation is not conserved for memory
consumption reasons. Therefore all the expressions of
transformation sheets must be evaluated. Note that such
computations can require a lot of time.

6 Conclusion and perspectives
In this paper, we have presented a complete method for authoring
XSLT transformation sheets by direct manipulation. This method
has been implemented into the Kaomi multimedia authoring tool.
The source view has been extended in order to edit XPath
expressions. The editing of transformations has been implemented
only for the execution view. This view provides a specific
representation of the transformation. It provides also a generic
representation for a subset of the XSLT language (for-each and
template instructions). The author can drag and drop expressions
in the specific and the generic representations. The template view
has been also implemented.

Compared to existing authoring tools, our proposal go further in
several points. First we propose a convenient user interface for
editing any XPath expression. This GUI is not based on forms as
<xsl>Composer. Second, we allow the editing of transformations
using both a specific and a generic representation of the generated
document. None of the existing tools allows specific
modifications of the transformation sheets.

We propose a set of rule patterns that allows specific
modifications. The generic representation is similar to the design
view of UltraDev. We have reconsidered this view in order to take

into account the expressiveness and the hierarchical structure of
XSLT. Furthermore, while all existing tools deal with HTML
target, we have considered a broader use of transformations
through the production of multimedia documents. The temporal
dimension of multimedia documents has an important impact on
the authoring tool, in particular on the generic representations.

In short term, we plan to extend the implementation to the other
views of Kaomi. In particular, the timeline view that allow the
visualization and the editing of the temporal scenario. Moreover,
we plan to consider the modification and the removal of
transformation rules. We want also to extend the coverage of the
XSLT language to the modularization instructions and the
variables instructions. Another point is to provide a set of services
that helps the author. In particular, the computation of similar
expressions can add some flexibility during the editing. Moreover,
it is well known that the knowledge of document models increases
the efficiency of authoring XML instances. How that can be
applied to the authoring of XSLT transformations, this remains an
open question.

References
[1] ActiveState, “Visual XSLT”, http://aspn.activestate.com/

ASPN/Downloads/VisualXSLT, 2001.
[2] Excelon, “Stylus Studio”, http://www.stylusstudio.com/, 2001.
[3] “Extensible Stylesheet Language (XSL) Version 1.0”, S. Adler

and Co, W3C Working Draft, available at
http://www.w3.org/TR/xsl/, 21 November 2000.

[4] Richard Furuta, Jeffrey Scofield and Alan Shaw, “Document
Formatting Systems: Survey, Concepts and Issues”, ACM
Computing Surveys, Vol. 14, N°. 3, pp. 417-472, September
1982.

[6] Masahiro Hori, Goh Kondoh, Kouichi Ono, Shin-ichi Hirose,
and Sandeep Singhal "Annotation-Based Web Content
Transcoding,'' In Proceedings of Ninth International World
Wide Web Conference, Amsterdam, Netherlands, 15-19 May
2000.

[7] Muriel Jourdan, Nabil Layaïda, Cécile Roisin, Loay Sabry-
Ismail, Laurent Tardif, “Madeus, an Authoring Environment
for Interactive Multimedia Documents”, ACM
Multimedia'98, pp. 267-272, ACM, Bristol (UK), September
1998.

[8] Muriel Jourdan, Cécile Roisin, and Laurent Tardif, “A
Scalable Toolkit for Designing Multimedia Authoring
Environments”, Special number, Multimedia Authoring and
Presentation: Strategies, Tools, and Experiences of
Multimedia Tools and Applications Journal, Kluwer
Academic Publishers, 1999.

[9] Teruo Koyanagi, Kouichi Oni, and Masashiro Hori,
"Demonstrational Interface for XSLT Stylesheet Generation",
Graphic Communications Association, Extreme Markup
Languages Conference, 17 August 2000.

[10] Brad A. Myers, "Demonstrational Interfaces: A Step Beyond
Direct Manipulation", IEEE Computer, 25(8), pp. 61-73,
1992.

[11] "Namespaces in XML", T. Bray, D. Hollander, A.
Layman, W3C Recommendation, available at
http://www.w3.org/TR/REC-xml-names, 14 January 1999.

[12] Oratrix, “GRiNS”, http://www.oratrix.com/, 2001.
[13] Emmanuel Pietriga, Vincent Quint and Jean-Yves Vion-

Dury, “VXT: A Visual Approach to XML transformations”,
submitted to Symposium on Document Engineering, 2001.

[14] SoftQuad, “XMetal 2.0”, http://www.xmetal.com/, 2000.
[15] Lionel Villard, "Madeus model DTD", available at

http://www.inrialpes.fr/opera/madeusmodel.dtd, 2000.
[16] Lionel Villard, Cécile Roisin and Nabil Layaïda, "An XML-

based multimedia document processing model for content
adaptation", Digital Documents and Electronic Publishing
(DDEP00), September 2000.

[17] Lionel Villard and Nabil Layaïda, "iXSLT: An Incremental
XSLT Transformation Processor for XML Document
Manipulation", submitted to World Wide Web Journal,
Kluwer publisher, 2001.

[18] W3C, “Amaya”, http://www.w3.org/Amaya/, 2001.
[19] WhiteHill, "<xsl>Composer", http://www.whitehill.com/,

2001.
[20] “XML Path Language (XPath)”, J. Clark and S. DeRose,

W3C Recommendation, available at
http://www.w3.org/TR/xpath.html, 16 November 1999.

[21] “XSL Transformations (XSLT)”, J. Clark, W3C
Recommendation, available at http://www.w3.org/TR/xslt,
16 November 1999.

		lionel.villard@inrialpes.fr
	2001-11-06T16:19:59+0100
	Lionel Villard
	I am the author of this document

