
Authoring Smil documents by direct
manipulations during presentation

Muriel Jourdan, Laurent Tardif and Lionel Villard

OPERA project, INRIA Rhône-Alpes.
655 avenue de l'Europe, 38330 Montbonnot, France.

e-mail: {Firstname.Lastname}@inrialpes.fr
http://www.inrialpes.fr/opera

Abstract - This paper presents Smily an authoring en-
vironment to write Smil documents. The main feature
of Smily is to strongly integrate the presentation view,
in which the document is executed, to the editing proc-
ess. In this view objects can be selected to perform a
wide set of editing actions from attributes setting to
direct spatial or temporal editions. This way to edit a
multimedia document is close to the well-known
WYSIWYG paradigm used by usual word-processors.
Moreover in order to help the author to specify the
temporal organisation of documents, Smily provides
her/him with an execution report displayed through a
timeline view. This view also contains information
which helps the author to understand why such execu-
tion occurs.

1 Introduction

The multimedia documents that we consider in
this paper are collections of heterogeneous ob-
jects (such as video, audio, text, picture) organ-
ised in both the spatial and temporal dimensions.
Moreover they support a hypertext structure to
provide the reader with interaction capabilities.
Several formats exist to model such documents:
MHEG [8], HyTime [3], Smil [18] are the most
well-known standards. Designing such a docu-
ment is known to be a complex and error prone
task for numerous reasons. Authors must handle
large numbers of objects in the document, they
have to deal with complex temporal information
(synchronisation tasks and objects duration) and
they cannot easily reuse parts of existing docu-

ments.

Thus, there is no doubt that using authoring tools
dedicated to the design of multimedia documents
is a better solution than using general program-
ming environments. However, the design of rele-
vant authoring tools raises several open issues and
progress still needs to be made to build the "per-
fect" tool to make writing multimedia documents
as easy as writing classical documents.

The World Wide Web Consortium contributes to
the debate about which format to model multime-
dia documents, focusing mainly on their temporal
dimensions. They proposed in June'98 [18] the
first version of a declarative format, called Smil,
which merged the absolute timing and relative
positioning of object by mean of a hierarchical
structure built upon sequential and parallel opera-
tors. Smil is defined as a tag based format and is
encoded as an XML DTD (Document Type Dec-
laration).

Although the number of Smil players have in-
creased (such as [9] and [13]) since the birth of
Smil, Smil editors have not followed the same
evolution. It confirms that the design of a relevant
authoring tool for multimedia documents is a non-
trivial task. Commercial Smil editors (such as
T.A.G [16] and Veon [17]) are mainly based on
timeline interfaces and so have disadvantages as-
sociated with absolute timing. Smil documents
written by using such tools are difficult to main-
tain. Moreover interactions and continuous media

(like video, audio), whose exact duration are not
known before their execution, are difficult to in-
tegrate. RealNetworks has chosen another ap-
proach [12] which is interesting for its simplicity
but whose use is very limited. Indeed, it provides
the author with a set of predefined templates, in
which she/he is obliged to choose one solution in
order to instantiate it with objects. As far as we
know, only three authoring tools allow the author
to really edit Smil structures: SmilComposer (a
commercially available tool [11]), GRiNS (a re-
search prototype which is in the process of being
industrialised [1] and [2]) and the Smily editor we
propose and present in this paper.

Smily is based on multiple views: the presenta-
tion view in which the document is played, the
timeline view in which temporal information
about the document is visualised and the hierar-
chical view in which the hierarchical structure of
the document is displayed. Objects can be directly
selected in the presentation view to apply specific
editing actions such as changing object attributes
or setting temporal operators. This provides au-
thors with an easy way to modify their documents
while playing them, without handling two differ-
ent contexts: one for editing documents, the other
for playing them. The selection can also be per-
formed in the two other views if it is more rele-
vant. Moreover, these three views are synchro-
nised: an object selected in one view is high-
lighted in the other views. In this way the views
are strongly linked and it is easy for the author to
find an object in one view if this one can be easily
selected in another one. Thus one user-friendly
way to use the Smily editor consists in playing the
document, pausing it, selecting objects with the
mouse in one view and performing editing actions
through menu selections.

The other interests of Smily are:

• the use of a timeline view to give visual in-
formation about the temporal behaviour of the
document during the editing process. An exe-
cution report is displayed each time a new
presentation of the document is played. It
shows exactly when objects have been played
and why such an execution occurs;

• the way the author designs the spatial layout
of the document directly in the presentation
view by using high-level spatial constraints.
Direct editing in the presentation view allows
authors to see both when and where objects
appear on the screen.

Smily is the result of research on editing multi-
media documents led by the Opera project for 5
years. The Opera project has conceived Madeus
[5] a multimedia documents authoring tool based
on the use of temporal constraints to describe the
temporal organisation of the document. From this
prototype, we have extracted a toolkit for building
authoring environments of multimedia documents
called Mikado [6]. This toolkit has been used to
build the Smily editor.

The paper is organised in two parts. The first part
contains both a brief presentation of the Smil for-
mat and a synthesis of existing Smil authoring
environments. In the second part, the different
features of the Smily editor are presented.

2 Smil: What is it and how do we edit it ?

Smil is recommended by the World Wide Web
Consortium (W3C) which is currently in version
1.0 (the version that we will consider in this paper
[18]). Smil is intended to easily integrate objects
of different media types (video, audio, text, pic-
ture, ...) in order to provide both spatial and tem-
poral organisations. In addition, mechanisms for
linking parts of the document are provided. We
only present here the main characteristics of the
standard.

2.1 A brief presentation of Smil

A Smil document is composed of a Head and a
Body part. The Head part contains the non-time-
based information about the document: mainly the
set of spatial regions which are used to define its
spatial layout. The Body part contains both the set
of objects with their attributes, their temporal or-
ganisation and the "hypertext" behaviour of the
document.

The temporal organisation of a Smil document is
based on a hierarchical structure of parallel and
sequential synchronisation operators and on tem-
poral attributes set either on objects or nodes. The
associated semantics is defined by applying two
sets of rules: the first one to define object dura-
tion and the second one to define operator behav-
iours. Rules which define object duration are the
following: a "dur" attribute can set the duration of
an object to an absolute value. If this attribute is
not used, the duration of an object depends on its
nature: a continuous object (which has an intrin-
sic duration) such a video or an audio is played
until its end, a discrete object (which has no in-
trinsic duration) such as a picture or a text is
played indefinitely. These first computed duration
can be modified by the rules associated with each
operator. The sequential (resp. parallel) operator
expresses the sequential (resp. simultaneous) play
of its operands. By default, the end time of a par-
allel construction is equal to the end of its longer
operand. However, this semantics can be changed
by using an "end_sync" attribute on a parallel
node, in such a way that the end of the parallel
construction will be equal to the end of its shorter
operand (end_sync = first) or a designated one
(end_sync = id(object), where the id function give
the name of the object).

Such a hierarchical structure allows the author to
define basic temporal behaviours. For more com-
plex schedules, the author can modify the behav-
iour computed from the hierarchical structure (as
this is explained in the previous paragraph) by
using begin and end attributes which can express
both absolute or relative offsets. An absolute off-
set put on a child of a parallel node (resp. sequen-

tial node) expresses a shift from the beginning of
this node (resp. the end of the previous child). If
the author uses a relative offset, she/he obliges
the start or end time of an object to be equal to
either the start or the end time of another sibling
object.

Hypertext behaviour is expressed in Smil as in
HTML by using "href" attribute on objects to de-
fine the destination of the link.

The last feature of Smil we would like to mention
is the "Switch" element which allows the author
to express several alternatives, one of which can
be selected at runtime by the player. For instance
it allows to play a picture instead of a video if the
network is overloaded.

At present, Smily supports only a subset of the
Smil standard. It allows authors to edit and play
Smil documents based on a hierarchical structure
built with parallel and sequential node. Moreover
end_sync attributes can be set on parallel nodes.
dur, begin and end attributes are also supported
either on objects or on nodes but begin and end
attributes can only express absolute offsets.

2.2 A working example written in Smil

The following example was designed to celebrate
the new year in a more animated way than a tradi-
tional postcard. It is used in the section 3 to illus-
trate the presentation of Smily. Temporal attrib-
utes have been written in bold. Region attributes
are not detailed.

T
fo
ou
se
se
20
pl
pa
w
er
So
on
no

2.
do

The following synthesis is based upon experimen-
tation with some authoring environments (Veon
[17], T.A.G [16], SmilComposer [11], Smil Wiz-
ard [12]) selected in the list given both at [7] and
[15]. No free version of GRiNS [2] exists yet.

We can divide such authoring tools into two cate-
gories taking into account only the way they man-
age the temporal organisation of a document:
those which use Smil as an output format but
keep their own internal format during authoring
processes, and the others (including Smily) that
provide the author with a way to edit Smil tempo-
ral structures. We will first compare these two
solutions, focusing at the end on the two closest
authoring tools to Smily, namely SmilComposer
and GRiNS. We finish this section with a few
words about how the spatial layout is specified in
each of these tools.

2.3.1 Two categories of Smil authoring tools

Current authoring tools that use Smil only as an
output format are based either on timeline inter-
faces (Veon [17], TAG [16]) on which authors set
objects with absolute timings, or on predefined
templates to instantiate (Smil Wizard [12]). Ad-
vantages for authors for using such kinds of tools

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE smil PUBLIC
"-//W3C//DTD SMIL 1.0//EN"
"http://www.w3.org/TR/REC-smil/SMIL10.dtd">
<smil>
<head>
<layout>
<region id="R" ... />
<region id="L1" ... />
<region id="L2" .../>
<region id="C" ... / >
</layout>
</head>
<body>
<par end_sync = "first" id = "par_main">
<img src="background.gif"

id="background" region="C"/>
<audio src="Song.wav" id="Song"

begin = "6" />
<seq id="seq_pic">
<img src="Reindeer.gif" id="Reindeer"

dur="18.0" region="R"/>
<img src="Name.gif" id="Name"

region="R"/>
</seq>
<seq id = "seq_txt">
<text src="Text1.html" id="Merry"

dur="9.0" region="L1"/>
<text src="Text2.html" id="And"

dur= "6.0" region="L1"/>
<par id="par_final" end_sync="first">
<text src="Text3.html" id="Happy"

dur="12.0" region="L1"/>
<video src="jumel.gif" id="Video"

region="L2"/>
</par>

</seq>
</par>
</body>
</smil>
he temporal behaviour of this document is as
llows: a parallel node is used to start simultane-
sly the background picture, the song, and two
quences of objects called seq_pic and seq_txt.
q_pic is a sequence of pictures (between lines
 and 25) and seq_txt is a sequence of three texts
us one video (between 26 lines 37). The two
rallel nodes have the attribute end_sync=first
hich means that they end when their shorter op-
and ends. One begin attribute is used on the
ng object (line 18) to shift its beginning 6 sec-
ds after the beginning of the main parallel
de.

3 Authoring environments of Smil
cuments

are twofold: firstly, they can go on to use their
usual authoring tools without learning a new in-
terface and secondly, they are not obliged to
know something about the Smil format. However,
in addition to disadvantages already mentioned in
the introduction associated with absolute timing
paradigm, such environments produce "low level"
Smil documents: their hierarchical structures are
very poor and objects are set with absolute tim-
ings using many begin and end attributes. Thus
the output format does not keep the whole seman-
tic of the document. For instance, some temporal
synchronisation are not expressed by a sequence
or a parallel node but are lost with the intensive
use of begin, end, and dur attributes. Conse-
quences for the authors are the following: firstly,
the Smil documents they get cannot be edited "by-
hand", for instance to add an attribute which is
not supported by the authoring environment they
used; Secondly, they are obliged to keep two for-
mats of the same document: the Smil one for pub-
lishing on the Web and the proprietary format of

the tool for editing purpose to be able to modify
the document. In this case, the authors are obliged
to always keep the same authoring tool. Finally,
they cannot use Smil for editing purposes as an
exchange format with other authors. The same is
true with some HTML authoring environments
(FrontPage is a good example of this situation)
which produce low level HTML with the same
disadvantages for authors.

To cope with these problems, some authoring
tools are closer to Smil principles and provide the
authors with a way to directly edit Smil struc-
tures. This is the case of both SmilComposer [11]
and the GRiNS editor [1] (presented below) and
also of Smily the Smil editor we present in this
paper. Smil documents generated by these tools
are more hierarchically structured to capture the
whole semantic of the document.

SmilComposer and GRiNS provide the author
with a hierarchical view coupled with a dialog
box to set attributes on both objects and nodes of
the document. The aim of the hierarchical view is
to design the main structure of the document: add-
ing parallel and sequence nodes, and objects un-
der those nodes. SmilComposer visualizes this
structure by a usual file manager window,
whereas GRiNS visualizes in the same view both
the structure and some information about the
temporal behaviour of the document deduced
from this structure. Indeed, objects are displayed
by boxes along a vertical axis which represents
the time progression (from top to bottom): two
objects in sequence (resp. parallel) are shown one
over (resp. beside) the other.

SmilComposer is only based on this hierarchical
view to specify the temporal organisation of a
Smil document. It uses the RealNetworks player
G2 [9] to play the generated Smil document, with-
out any link with the editing interface. The major
difficulties for an author which uses this tool are
to anticipate and to understand the temporal
behaviour of her/his document from the hier-
archical view only.

This is why, before executing the document,
GRiNS provides the author with an additional
view: the virtual timeline view which uses hori-
zontal timelines to show when objects are played

(only the leaves of the hierarchical structure are
visualized) as calculated from the hierarchical
view and attributes associated with objects and
nodes. Objects which share the same region are
set on the same line. The time axis used in this
view is virtual: displayed duration are not the ex-
act one due to the indeterminate duration of con-
tinuous objects which cannot be known before
execution and the presence of switch elements
which will be resolved at execution time. The
timeline view of GRiNS provides the author with
object selection capabilities for instance to
change object attributes. Only begin and end at-
tributes are visualized in the GRiNS timeline
view (by arrows) to help the author to understand
the temporal behaviour displayed. Finally, the
document is played in a presentation view which
is not integrated to the editing process (no object
selection capabilities).

2.3.2 Spatial layout specification

The layout of the document is specified in each
previously mentioned tool (Veon, T.A.G., Smil-
Composer, …) by using approximately the same
mechanism: a layout window allows the author to
draw boxes and to set between them usual spatial
relations (such as centring or aligning) by group-
ing objects as in graphical editors. Then, the au-
thor associates each object with a region. The
Smil format does not contain any kind of spatial
relations to define the spatial layout of the docu-
ment. However, since such mechanisms really
ease the authors task, authoring tools of Smil
documents handle this kind of information as ex-
tra editing tags (see below the solution applied in
Smily).

This simple way to edit the spatial layout of a
document is a direct consequence of the clear
separation made in the Smil format between spa-
tial and temporal information. However, this
strong separation has the disadvantage that when
the author draws regions in the layout window,
she/he does not know if they will appear at the
same time on the screen during the document
presentation, while this information is important
to decide their relative positions. Moreover for
long documents, the whole set of regions drawn

on the layout view at the same time is too compli-
cated to manage for authors.

3 The main principles of editing with Smily

The highest number of Smil editors of the first
previously mentioned category reflect some wait-
and-see policy of commercial companies with
regards to Smil. They prefer low-cost solutions
rather than really investigate other solutions. This
is time now to reach a new step to fulfil author
needs completely. The Smil standard is enough
mature to design editors which are strongly linked
with its structures. This is the aim of Smily.

3.1 Smily objectives

The first objective of the Smily editor is to pro-
vide author with a "WYSIWYG" interface. This
paradigm makes the success of word-processors.
It has to be adapted to multimedia documents as
explained in [4]. This implies to strongly integrate
the presentation of the document to the authoring
process. The spatial layout specification will
strongly benefit by such an integration.

The second objective of Smily is to really ease the
author in the most difficult task of multimedia
documents design: the temporal synchronization

specification. As in GRiNS, we promote the use
of a timeline view to show temporal positions of
objects deduced from the hierarchical specifica-
tion. However, this first level of information must
be completed by some explanations about the rea-
sons of such positions.

Finally, we are convinced by the necessity of pro-
viding the authors of Smil documents with tempo-
ral checking capabilities during the editing proc-
ess. This is a guarantee of the compliance with
the Smil specification which defined some cases
of temporal errors. Detecting such errors during
the editing process and not at the end of an edit-
ing session (or before the presentation of the
document) helps the author to find the source of
the error. As far as we know, existing authoring
tools do not address this issue.

3.2 General Overview

Figure 1 shows a screen dump of the Smily inter-
face during an editing session of the previous ex-
ample. Different areas (A, B, …) are displayed to
ease the presentation:

• (A) is the presentation view which shows the
presentation of the document with basic time
control functions (C) such as play, pause and
resume.

• (B) is the hierarchical view which shows both
the set of objects involved in the document
and their hierarchical organisation in terms of
sequence and parallel nodes. "end_sync" at-
tributes are also shown in this view. It is built
like a "file manager" with close and open fa-
cilities on each node of the hierarchical struc-
ture.

• (D) is the control menu accessible through
each view. It allows the author:

• to perform usual action on a hierarchical
structure: to add/remove/move an object
at each level of the hierarchy and to
add/remove a temporal node (E).

• to set attributes on objects, regions or
nodes with a dialog box.

• to set spatial relations between region as
explained in section 3.4.

The timeline view is presented in figure 2. It uses
the timeline metaphors to visualize the temporal
structure of the document. This view will be pre-
sented in more details in section 3.3.

To apply these actions, the author has to select
objects or nodes in the most appropriate view.
The three views are synchronised, that means that
an object selected in one view is highlighted in
the other. This is the case of the Happy object in
figure 1. Thus, the author has no difficulty to
make the link between the three views and more
particularly between the presentation view and
the others. With other words, she/he does not
loose time to look for an object if this object can
be easily selected in one view. Such a situation
often occurs. This is the case, for instance when
the author looks at the presentation of the docu-
ment and wants to know which temporal opera-
tors affect an object currently displayed. The most
appropriate view to find this kind of information
is the timeline view but the object selection is
easier in the presentation view, since the author
directly sees the object on the screen.

Figure 1 – Smily Interface : hierarchical view on the left and presentation view on the right

B

D

E

C

A

One way to build a Smil document from scratch
consists in adding new objects under the root
node (present by default when asking for a new

Smil document), thus associating with these ob-
jects temporal operators. At this point, the author
can play her/his document and modify its layout
(see section 3.4). If she/he wants to change some-
thing, she/he can pause the execution to perform
the changes (for instance, adding a new temporal
node in the hierarchy). Then, she/he can save and
go on by replaying the document.

3.3 Smily timeline view

Because our environment is based on a closed
connection between edition and presentation, it
was straightforward to build the content of a time-
line view from an execution. As an execution
report, it provides the author with a reliable per-
ception of the temporal behaviour of the docu-
ment, together with a way to understand this exe-
cution thanks to additional information. We
choose to show on this view both basic objects
(the leaves of the hierarchy) and nodes for two
reasons. First, node visualizations are mandatory
to display temporal consequences of some Smil
elements. For instance, a begin attribute set on a
child of a parallel node links the start time of this
child and the start time of the parallel node. Sec-
ond, nodes are a simple structure to use as the
base of a zoom/unzoom mechanism The last fea-
ture of the Smily timeline view is that it also gives
information about which objects have been inter-
rupted or even have been not presented at all due
to end_sync attributes. Both kind of information
are useful to check if such end_sync attributes

have been well set on the hierarchical structure of
the document. This information are shown using

dotted lines just after the execution report..

Therefore, this view is characterised by:

• objects displayed by boxes along the time
axis, exactly as they have been played.
Their start time can be read on the graduate
axis and the length of their box gives their du-
ration. Children of a sequence node (resp.
parallel node) are drawn on the same horizon-
tal line (resp. on successive horizontal lines).

• macro-boxes associated with sequential and
parallel nodes which encapsulate the boxes of
their children. These macro-boxes can be
opened and closed by the author by using the
mouse. The different level of the hierarchy
are distinguished by backgrounds with differ-
ent levels of grey colours.

• graphical (blue or red) marks associated with
each temporal placement resulting from a
Smil element (temporal operator or attribute):

• a vertical line between two points (start or
end times) indicates that an explicit Smil
element implies that these points are si-
multaneous in every execution of the
document.

• a horizontal line is used to visualize either
a begin, a dur or a end attribute. It links

Figure 2 - The Smily timeline view with some closed boxes

the two time points involved by the at-
tribute.

• a vertical arrow links the end points of
every operands of a parallel node which
has an end_sync attribute equal to "first".
This arrow goes from the operand which
causes the end of the node to the other
objects.

Moreover the timeline view is synchronised with
the hierarchical view, through these marks: by
selecting a vertical mark (resp. horizontal mark)
the author can see which Smil nodes (resp. ob-
jects) is involved in the corresponding synchroni-
zation effect.

Figure 2 shows the timeline view computed after
one execution of our complete working example.
This execution is such that it is the Song object
(due to its effective duration) which is the shortest
operand of the <par end_sync=first> node line . In
this figure, the seq_pic and par_final nodes are
closed. Numbered red arrows are added to the
timeline view to ease its presentation.

A blue horizontal line (arrow 1) links the start
time of the main parallel node and the start time
of the Song object due to the begin attribute set
on this audio object. If this mark is selected, the
Song object is highlighted in the hierarchical
view, since the begin attribute is set on this ob-
ject. The dur attributes on Merry and And are also
displayed by such a blue horizontal lines (ar-
rows 2).

A blue vertical line (arrow 3) is drawn between
the start times of the "Par main" node children to
show these time points are simultaneous due to
the main parallel node. The same idea is used to
visualize the effects of a sequential node: a blue
vertical line (arrow 4) is drawn on the end time of
Merry and the start time of And.

Blue arrows (arrows 5) link the end of the Song
object to the end of the other operands of the
par_main node, since in this execution, this is the
Song object that causes the end of those objects.
Moreover, the end of the seq_txt node interrupts
the par_final node in its turn. This last effect is
also visualized by a blue arrow (arrow 6). If this

blue arrow is selected, the hierarchical view high-
lights the seq_txt node and the par_main node,
since both elements explain the interruption.

Figure 3 gives the same timeline view than fig-
ure 2 but each node of the hierarchy are opened.
In this view, we choose to colour in red the two
horizontal lines which are the graphical vizualisa-
tions of the dur attributes set on Name and Happy.
Indeed, the reported execution is such that the
effective duration of these objects are shorter than
the one specified by their dur attribute. We think
that this is a relevant information to show to the
author

On our example, one relevant information given
by the second part of the timeline view (displayed
using dotted lines just after the execution report)
is that in the reported execution (which is a possi-
ble one) the video is interrupted. This behaviour
is may be not wished by the author. One solution
to preserve the content of the video, consists in
removing the end_sync=first attribute on the
par_main node and setting a dur attribute on the
background object.

3.4 Editing Spatial Layout

The main feature of the spatial layout specifica-
tion in Smily is to use the presentation view to
move/resize objects directly on the screen. This is
a straightforward consequence of the strong con-
nection between the editing and presentation in-

Figure 3 - the Smily timeline view with each node opened

terfaces in Smily. Therefore, the spatial layout
specification is not completely disconnected from
the temporal organisation of the document as in
the other editors we have tried. This means that
authors see both when and where objects appear
on the screen. This is very useful for authors to
decide the relative positions of regions. More-
over, the time progression is used to reduce the
number of regions shown at the same time, thus
avoiding the second drawback (see section 2.3.2)
attached with the use of a layout view: every re-
gions are drawn at the same time.

For each object inserted in a Smil document (ex-
cept audio elements), an associated new region is
automatically created.

Region attributes (left, top, width, ...) can be
modified by the author in several ways:

• directly through the general attributes dialog
box, or by direct manipulations on the presen-
tation view (moving, resizing objects).

• indirectly by setting spatial relations (cen-
tring, aligning,...) between objects through
the presentation view. These relations are
maintained while objects are moved on the
screen by the author.

Likewise, the region attribute of an object, which
specifies in which region this object will appear,
can be modified either by using the attributes dia-
log box or by setting the specific "same region"
spatial relation between two selected objects. It
implies that the second selected object takes the
same region as the first.

Spatial relations are handled in Smily by using
constraint algorithms [10]. This has the following
advantage: it is possible for an object to have spa-
tial relations with different objects, each relation
will be maintained while these objects are moved
on the screen by the author. The same is not true
with usual mechanisms used in graphical editors
to handle such spatial relations: they are only
maintained through an active group of objects and
one object cannot be in more than one group at
the same time.

Spatial relations between regions do not exist in
the Smil format. It implies that during the saving
of document, spatial relations are kept like extra
editing information by adding new tags. In order
to keep Smil document readable by other players,
Smily uses namespace [18] as it is recommended
in the Smil specification. It is also possible to
save a "pure" Smil document (without namespace
element), for instance to allow document valida-
tion.

3.5 Checking temporal consistency of the
document

From the subset of Smil handled in Smily, there is
no way to introduce a temporal inconsistency in a
document. Indeed, the main source of temporal
errors are relative offsets which are not yet sup-
ported. Smily does not support relative offsets
because the semantics associated with such values
of begin and end attributes are not well defined in
the current version of the Smil specification1.
Thus, we prefer to wait for a clearer definition of
such values to integrate them in our editor. How-
ever, the set of rules given in this specification
can be applied to some small Smil examples
without ambiguities. Some of these examples
break temporal properties express in the
specification. We take them to illustrate the
interests of using Smily as far as temporal
consistency checking is concerned.

The two temporal rules which are expressed in
the smil specification and that we consider here
are the following: (rule 1) a begin attribute used
with a relative offset can only delayed the start
time of an object computed without this attribute;
(rule 2) A relative offset defined as the sum of the
start time of another object and an absolute value
must be such that the absolute value is lower than
the duration of the designated object.

The first Smil example that we consider has the
following body part. It breaks the rule 1.

1 Improvement on this point is provided for in the second
version of Smil in addition with the extension of timing and
synchronization functionalities (see [14])

1 <seq>
2 <picture id = "A" dur ="4s" .../>
3 <picture id = "B" begin="id(A)(begin)".../>
4 </seq>

The second example is obtained by replacing the
value of the begin attribute of B by "id(A)(7s)"
which means that the begin of B is equal to the
begin of A plus 7 seconds. It breaks the rule 2.

Smily checks the two rules each time an editing
action is performed on the document in order to
warn the author as fast as possible. If an error is
detected, this incremental detection helps her/him
to find the source of the error. Smily is able to
perform such verification thanks to its internal
graph structure [6] which is maintained during the
whole editing session. Algorithms used to detect
such inconsistencies are inherited from the Mi-
kado toolkit, since the same needs of temporal
checking appear in the Madeus authoring tool [5].

4 Conclusion

In this paper we present Smily a Smil editor by
comparing it with other commercial and prototype
tools. Smily is an authoring tool which allows an
author to edit Smil structures by direct manipula-
tion in the presentation view. As far as we know,
Smily is the only tool which integrates this view
in the editing process. In this view, objects can be
selected to perform a wide set of editing actions
from simple attributes setting to direct spatial or
temporal editions. This way to edit a multimedia
document is close to the well-known WYSIWYG
paradigm used by editors of textual documents. It
reduces the length of the action/perception cycle
and the authors do not need to manage an editing
and a presentation contexts.

Moreover in order to help the author to specify
the temporal organisation of documents, Smily
provides her/him with an execution report dis-
played through the timeline view. This execution
report has the particularity to be associated with
additional information directly linked with the
hierarchical view which helps the author to un-
derstand why such execution occurs.

Smily is built using Mikado: a scalable toolkit for
building multimedia authoring environment. This
allows us a fast development of the application
and adaptability capabilities, particularly to fol-
low the advancements of the second version of
Smil which is being developed. Moreover, thanks

to Mikado we will be able to provide the authors
with interesting temporal checking capabilities as
far as the semantics of relative offsets in Smil will
be clearly defined.

The current state of Smily allows us to write Smil
documents as explained in this paper, only the
timeline view is not yet completely operational
but should be usable before Summer'99.

Future works in Smily will evolve in the two fol-
lowing directions:

• Integrating a larger subset of the Smil stan-
dard. In addition with relative offsets, we are
very interested by the switch element which
allows the document to adapt itself during its
presentation.

• Extending the timeline view in such a way
that it will be also an editing view. Our idea is
different from the one experimented in
GRiNS which tries to show every possible
execution at the same time. We prefer first to
display one possible execution and second to
give authors access to the others by direct
manipulations on the current display. Some
conclusive experiments have yet been made
in this direction in the Madeus authoring tool
[4].

References

[1] Bulterman D.C.A., Hardman L., Jansen J.,
Mullender K.S., Rutledge L., “A GRaphical
INterface for creating and playing SMIL
documents”, proc. WWW-7, pp. 519-529,
Computer Networks and ISDN Systems 30,
Brisbane, Australia, April 1998.

[2] GRiNS, on line : http://www.cwi.nl/
GRiNS/.

[3] ISO/IEC JTC1/SC18/WG8 N1920,

Information Technology: Hypermedia/
Time-based Structuring Language
(HyTime), Second edition, ISO/IEC, août
1997. http://www.ornl.gov/sgml/wg8/docs/
n1920/html/n1920.html.

[4] Jourdan M., Roisin C., Tardif L.,
“Multiviews Interfaces for Multimedia
Authoring Environments'”, Proc. of the 5th
Conference on Multimedia Modelling,
Lausanne, 12-15 October 1998.

[5] Jourdan M., Layaïda N., Roisin C., Sabry-

ismail L., Tardif L., ”Madeus, an Authoring
Environment for Interactive Multimedia
Documents”, 6th ACM Multimedia'98,
Bristol, 12-16 septembre 1998.

[6] Jourdan M , Roisin C, Tardif L., “A

Scalable Toolkit for Designing Multimedia
Authoring Environments”, submitted to the
special issue on multimedia authoring and
presentation techniques, for the ACM
Multimedia Systems journal, vol. , 1999.

[7] JustSMIL, “http://www.justsmil.com/”.

[8] Price R., “MHEG: An Introduction to the

Future International Standard for
Hypermedia Object Interchange”,
Proceedings of the First ACM Conference
on Multimedia, pp. 121-128, ACM Press,
Anaheim, Californie, August 1993.

[9] Real Netwoks G2, on line :

http://www.real.com/g2/index.html.

[10] Sannella M., Malorney J., Freeman-Benson

B., Borning A, “MultiWay versus OneWay
Constraints in User Interfaces : Experience
with the DeltaBlue Algorithm, Software
practice and Experience”, vol. Vol. 32,
num. 5, pp. 529-566, May 1993.

[11] Smil Composer, on line :
http://www.sausage.com/supertoolz/toolz/st
smil.html.

[12] Smil Wizard in G2 Authoring Kit,

http://www.real.com/products/tools/authkit/
index.html.

[13] Soja Barbizon, on line : http://www.helio.
org/.

[14] Synchronized Multimedia Working Group
Charter, http://www.w3.org/AudioVideo/
Group/symm-wg-charter#1.

[15] Synchronized Multimedia, http://www.w3.
org/AudioVideo.

[16] T.A.G, on line : http://tag.digital-ren.com.

[17] Veon , on line : http://www.veon.com/.

[18] W3C Recommendation, “Synchronized

Multimedia Integration Language (SMIL)
1.0 Specification”, http://www.w3.org/TR/
REC-smil, 15-June 1998.

	Authoring Smil documents by direct manipulations during presentation
	1 Introduction
	2 Smil: What is it and how do we edit it ?
	2.1 A brief presentation of Smil
	2.2 A working example written in Smil
	2.3 Authoring environments of Smil documents
	2.3.1 Two categories of Smil authoring tools
	2.3.2 Spatial layout specification

	3 The main principles of editing with Smily
	3.1 Smily objectives
	3.2 General Overview
	3.3 Smily timeline view
	3.4 Editing Spatial Layout
	3.5 Checking temporal consistency of the document

	4 Conclusion
	References

